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В последние годы применение технологий на основе машинного обучения все более актуально для мо-
ниторинга выбросов парниковых газов в Арктике, где наблюдаются интенсивная деградация многолет-
немерзлых пород и увеличение выбросов метана в атмосферу. В настоящей работе созданы и сравнены 
модели на основе рекуррентных и  графовой нейронных сетей для прогнозирования динамики концен-
траций основных парниковых и угарного газов в приземном слое атмосферного воздуха арктического 
острова Белый (Россия, Ямало-Ненецкий автономный округ). Исходный набор данных представлял собой 
измерения приземной концентрации четырех газов за летние месяцы 2016—2017 гг.: углекислого газа, 
метана, угарного газа и водяного пара. Для прогнозирования при помощи графового метода использо-
валась модель Multivariate Time Series Graph Neural Network (MTGNN), прогнозирование при помощи ре-
куррентного метода производилось при помощи моделей Long Short-Term Memory (LSTM) и Long Short-
Term Memory Network (LSTNet). Точность прогноза моделей оценивалась при помощи следующих метрик: 
средней абсолютной ошибки MAE, среднеквадратической ошибки RMSE, нормализованной среднеквадра-
тической ошибки NRMSE, коэффициента корреляции Corr. В целом модель MTGNN продемонстрировала 
более низкие значения ошибок по сравнению с рекуррентными моделями. У MTGNN по сравнению с LSTM 
и LSTNet ошибки ниже на 25—55%. Более точная графовая модель потребовала значительно большего 
времени для обучения и имела существенно большее количество параметров для оптимизации.

Ключевые слова: временны́е ряды, парниковые газы, Арктика, прогноз, нейронные сети, графовые нейронные 
сети, LSTM.

Введение
Рекуррентные нейронные сети (RNN) и графовые 

нейронные сети (GNN) играют ключевую роль в со-
временном машинном обучении, оба эти подхода 
используются для создания прогнозов с учетом раз-
личных сложных нелинейных взаимосвязей в  дан-
ных. Так, RNN эффективны в обработках последова-
тельных данных, так же как и графовые нейронные 
сети, которые могут представлять данные в  виде 
различных графов.

Рекуррентные нейронные сети типа LSTM и GRU 
используются для моделирования различных 
временны́х зависимостей и  долгосрочной памяти 
в  последовательных данных [1—3]. Такие модели 
используются для прогнозирования урбанистиче-
ских мобильных паттернов [4], что подтвержда-
ет их высокую эффективность в  задачах анализа 
временны́х рядов.

Графовые нейронные сети также могут использо-
ваться для прогнозирования. Они особенно полезны 
при решении задач, где важно учитывать простран-
ственные зависимости, например для метеороло-© Бобаков В. С., Буевич А. Г., Буторова А. С., Сергеев А. П., 2026
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гических данных, данных о  дорожном движении 
и  т.  п. [5—9]. Однако эффективность применения 
GNN зависит от выбранного подхода к построению 
графа в  нейронной сети. Существует много спо-
собов построения графов  — временны́х, статиче-
ских, пространственно-временны́х. Так, временны́е 
графы представляют собой структуры, где ребра 
и узлы могут изменяться во времени. Такие графы 
особенно эффективны в  задачах прогнозирования 
последовательностей или моделирования динами-
ческих систем [10]. Статические графы представля-
ют собой неизменные структуры, где узлы и ребра 
фиксированы, что может быть полезно для решения 
задач, где связи между данными постоянны [11]. 
Пространственно-временны́е графы объединяют 
узлы и ребра так, чтобы моделировать зависимости 
объектов в пространстве и их изменения во времени. 
Они широко применяются для анализа транспорт-
ных сетей, предсказания погодных условий и меди-
цинской диагностики [12].

Однако графовые нейронные сети требуют слож-
ных вычислений, особенно при обработке данных 
с большим количеством узлов и ребер [13]. В таких 
задачах, как моделирование транспортных сетей 
или социальных графов, GNN могут стать неэффек-
тивными из-за необходимости повторного обучения 
на графах большой размерности. RNN, напротив, хо-
рошо работают с последовательными данными, не 
требуя моделирования сложных графовых связей, 
что снижает нагрузку на вычислительные ресурсы.

Применение таких технологий актуально для мо-
ниторинга выбросов парниковых газов в Арктике, где 
наблюдаются интенсивная деградация многолетне-
мерзлых пород и увеличение выбросов метана в ат-
мосферу. Поэтому гибридные подходы, сочетающие 
LSTM с  дискретным вейвлет-преобразованием, по-
казали выдающиеся результаты. Например, для про-
гнозирования концентрации метана в  арктическом 
регионе совместное использование LSTM и  вейв-
лет-преобразования позволило значительно снизить 
ошибки прогноза и  повысить точность на 70—79% 
[14]. Другие нейросетевые модели, такие как NARX, 
также показали высокую корреляцию между прогно-
зируемыми и  наблюдаемыми концентрациями мета-
на, что подтверждает их эффективность для задач 
краткосрочного прогнозирования [15; 16]. Последние 
исследования выявили, что в 2019—2021 гг. концен-
трация метана в  Циркумарктическом мегарегионе 
и на полуострове Ямал была ниже глобального уров-
ня. В 2020 г. повышение температуры на Ямале спо-
собствовало увеличению выбросов метана, тогда как 
аномальные холода 2021  г. препятствовали выходу 
газа из мерзлых слоев почвы [17; 18]. Эти данные 
подчеркивают, что для повышения точности прогно-
зов в гибридных моделях важно учитывать сезонные 
и  температурные колебания [19—21]. Несмотря на 
преимущества в  обработке последовательностей, 
RNN могут сталкиваться с  трудностями при учете 
динамических изменений в Арктике, связанных с из-
менением климата. Например, резкие температурные 

колебания могут создавать сложные, нестабильные 
последовательности, что затрудняет составление 
точных прогнозов.

Целью настоящего исследования является срав-
нение эффективности моделей на основе рекуррент-
ных и графовой нейронных сетей для прогнозирова-
ния динамики концентраций основных парниковых 
и  угарного газов в  приземном слое атмосферного 
воздуха арктической территории.

Материалы и методы
Сбор исходных данных и их описание

Для проведения исследования использовались 
данные, полученные за летние месяцы 2016—
2017  гг. на арктическом острове Белый, распо-
ложенном в  Ямало-Ненецком автономном округе 
России. На острове нет постоянного населения. Его 
площадь составляет 1810 км². Там много термокар-
стовых озер, рек и  болот. Поверхность равнинная, 
постепенно поднимающаяся к  югу, где достигает 
максимальной высоты 12 м над уровнем моря. Се-
верное и восточное побережья низкие, песчаные, на 
западном и  южном берегах местами встречаются 
обрывы до 6 м высотой. Почва состоит из глины и пе-
ска с вечной мерзлотой на глубине от 50 до 60 см. 
Поверхность покрыта тундровой растительностью: 
травами, мхами и карликовыми ивами. Среднегодо-
вая температура составляет −10,6°C. Исследования 
велись в  северо-западной части острова в районе 
гидрометеорологической станции им. М. В. Попова.

Измерения проводились на высоте 7  м спектро-
скопическим анализатором Cavity Ring-Down (CRDS) 
модели G1401 производства PICARRO Inc. (США). 
В  качестве исходной информации использовались 
пятисекундные данные о содержании в атмосфере 
CO2, CH4, CO и H2O. В результате почасового усред
нения получены четыре реализации временны́х ря-
дов, содержащих 2445  временны́х отсчетов. В  ис-
следуемом периоде после почасового усреднения 
данные не имели пропусков и аномалий.

Нормализация, сглаживание 
и разбиение исходных данных

Наблюдаемые значения четырех временны́х ря-
дов были последовательно сглажены скользящим 
окном, а затем нормализованы:
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где z(i)  — значение сглаженного и  нормализован-
ного временно́го ряда в  момент времени i; o(j)  — 
значение наблюдаемого временно́го ряда; o  — вы-
борочное среднее временно́го ряда; so — выборочное 
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стандартное отклонение; m = 10 — размер скольз-
ящего окна; n — размер наблюдаемого временно́го 
ряда.

Сглаженные и нормализованные временны́е ряды 
были разбиты на тренировочные, тестовые и  вали-
дационные выборки в  соотношении 70%/10%/20% 
соответственно.

Модели и входные данные
В качестве входных данных для обучения всех 

рассматриваемых моделей использовались значе-
ния четырех переменных (концентраций CH4, H2O, 
CO, CO2) — сглаженных и нормализованных рядов 
в  скользящем окне. Ширина окна подбиралась от-
дельно для каждой модели так, чтобы процесс обу-
чения был оптимальным — максимально возможная 
производительность при разумных вычислительных 
затратах.

Схема применяемой методики приведена на рис. 1.
Для прогнозирования динамики концентра-

ций газов были выбраны модели LSTM, LSTNet 
и MTGNN, так как каждая из них хорошо справляет-
ся с временны́ми рядами:
•• LSTM и LSTNet — рекуррентные модели, способ-
ные удерживать информацию о прошлых отсчетах 
и  выявлять временны́е зависимости при относи-
тельно небольшом окне (48 отсчетов).

•• MTGNN сочетает графовые и  временны́е свер-
точные блоки, что позволяет захватывать долго-
срочные зависимости во временно́м ряду (ис-
пользовалось окно 96  отсчетов). Хотя графовая 
структура обычно применяется при нескольких 
датчиках, в  данной работе она помогла модели 
лучше извлекать сложные временны́е паттерны.

Модель Long Short-Term Memory (LSTM)
LSTM  — это тип рекуррентной нейронной сети, 

использующий ячейку памяти для хранения долго-

временной информации. Управление данными осу-
ществляется через три шлюза: забывания (удаляет 
ненужное), входных данных (добавляет новое) и вы-
ходных данных (передает важное дальше). Благо-
даря такому механизму управления модель LSTM 
способна запоминать важные детали в  длинных 
последовательностях данных, эффективно справля-
ясь с  проблемой исчезающего градиента, которая 
затрудняет обучение традиционных рекуррентных 
нейронных сетей.

Модель Long Short-Term Memory Network (LSTNet)
LSTNet  — это гибридная модель, сочетающая 

несколько подходов для анализа временны́х рядов. 
Она использует сверточные нейронные сети (CNN) 
для выделения локальных зависимостей, LSTM для 
долгосрочных зависимостей и  авторегрессию для 
краткосрочных. Важным элементом является мо-
дуль Skip-RNN, позволяющий передавать данные 
между удаленными слоями, минуя промежуточные. 
Это сохраняет информацию из предыдущих слоев 
и  помогает учитывать периодические закономер-
ности. Такая архитектура эффективно моделирует 
сложные временны́е ряды, обрабатывая как локаль-
ные, так и глобальные зависимости.

Модель Multivariate Time Series Graph 
Neural Network (MTGNN)

Модель MTGNN объединяет графовые нейрон-
ные сети GNN и  временны́е сверточные сети TCN 
для анализа многомерных временны́х рядов. GNN 
используются для выявления зависимостей между 
различными переменными, моделируя их взаимо-
действия в  виде графа. TCN, в  свою очередь, спе-
циализируются на захвате временны́х закономер-
ностей, анализируя изменения данных во времени. 
Такая интеграция позволяет MTGNN эффективно 
изучать как пространственные, так и  временны́е 

Скользящее окно

Графовые модели

Неграфовые модели

CH4 метан
CO угарный газ
CO2 углекислый газ
H2O водяной пар

CH4

CO

CO2

H2O

Рис. 1. Схема методики численного эксперимента. Составлена авторами
Fig. 1. Scheme of the numerical experiment methodology. Compiled by the authors
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зависимости, что делает модель подходящей для 
сложных задач, таких как прогнозирование много-
мерных временны́х рядов.

Для построения графа в модели MTGNN исполь-
зуется комбинация обучаемой структуры графа 
и  локальных подграфов, которая позволяет за-
хватывать зависимости между узлами временно́го 
ряда даже при ограниченном количестве сенсоров. 
В частности:
•• граф строится с  помощью GCN-блоков (Graph 
Convolutional Networks), где gcn_true = True и build_
adj = True, что означает, что модель одновременно 
использует как фиксированное, так и  обучаемое 
смежностное представление узлов;

•• подграфы (subgraph_size  =  3) формируют локаль-
ные кластеры узлов, которые участвуют в свертках, 
что позволяет модели выявлять локальные паттер-
ны во временно́м ряду;

•• параметры gcn_depth = 3 и dilation_exponential = 2 
обеспечивают захват долгосрочных зависимостей, 
расширяя рецептивное поле по временно́й оси;

•• skip- и residual-связи (skip_channels = 32, residual_
channels  =  16) повышают устойчивость обучения 
и позволяют эффективно передавать информацию 
через несколько слоев графа.
Таким образом, граф в MTGNN строится не на ос-

нове физической сети сенсоров, а исходя из стати-
стических и временны́х корреляций между отсчета-
ми ряда, что особенно полезно при одном датчике 
и коротких временны́х окнах. Выбранный подход по-
зволил модели лучше выявлять сложные временны́е 
закономерности и обеспечил ее высокую продуктив-
ность, несмотря на малое количество входных узлов.

Оценка точности моделей
Для оценки точности построенных моделей ис-

пользовались следующие метрики: средняя абсо-
лютная ошибка MAE, среднеквадратическая ошиб-
ка RMSE, нормализованная среднеквадратическая 
ошибка NRMSE, коэффициент корреляции Corr.
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где oi — сглаженное и нормализованное наблюдае-
мое значение; pi  — прогнозируемое значение для 

сглаженного и нормализованного ряда; o  — сред-
нее наблюдаемое значение; p  — среднее прогно-
зируемое значение.

Также для визуализации производительности 
моделей использовалась диаграмма Тейлора для 
сглаженного и нормализованного ряда.

Результаты и обсуждение
Для прогнозирования динамики концентраций 

газов использовались две рекуррентные модели: 
LSTM (ширина окна — 48 отсчетов), LSTNet (шири-
на окна — 48 отсчетов) и графовая модель MTGNN 
(ширина окна — 96 отсчетов). Таким образом, пер-
вые 48 отсчетов в тестовом и валидационном фраг-
ментах для моделей LSTM и LSTNet и первые 96 от-
счетов в тестовом и валидационном фрагментах для 
модели MTGNN не предсказывались.

LSTM использует механизмы «забывания» через 
forget-gate, чтобы отбрасывать неважную инфор-
мацию. Если окно слишком длинное, модель на-
чинает «размывать» значимые зависимости, осо-
бенно если важные паттерны находятся ближе 
к концу окна.

MTGNN сочетает временны́е свертки и графовые 
операции, которые позволяют захватывать более 
протяженные во времени корреляции между пара-
метрами. В отличие от LSTM MTGNN не зависит от 
рекуррентного состояния, поэтому оно лучше справ-
ляется с длинными окнами без потери информации 
о последних отсчетах.

Усредненное время обучения для MTGNN соста-
вило 1254 с, для LSTM — 77 с, для LSTNet — 66 с. 
Обучение проходило на четырехъядерном процес-
соре IntelCore i7 2,3 GHz.

Описательная статистика представлена в табл. 1.
В табл.  2 приведены результаты оценки эффек-

тивности моделей. Лучшие значения метрик выде-
лены полужирным шрифтом.

Общий анализ табл.  2 показывает, что модель 
MTGNN стабильно превосходит LSTM и LSTNet по 
всем ключевым метрикам прогнозирования (MAE, 
RMSE, NRMSE, Corr) для всех четырех газов CO2, 
CH4, CO и  H2O. В  среднем по сравнению с  LSTM 
MTGNN снижает MAE на 25—45%, а по сравнению 
с  LSTNet  — на 35—55%. Аналогичное снижение 
наблюдается и  по RMSE. Например, для CH₄ MAE 
у  MTGNN составляет всего 0,026, в  то время как 
у LSTM — 0,048, что означает снижение ошибки на 
45,8%. По H2O MTGNN показывает MAE 0,030 про-
тив 0,050 у LSTM — снижение на 40%.

Стоит отметить, что, несмотря на прирост точ-
ности в  показателях, графовая модель требовала 
значительно больше времени для обучения и имела 
существенно большее количество параметров для 
оптимизации. Это делает ее ресурсоемкой по срав-
нению с рекуррентными моделями LSTM и LSTNet, 
которые, в  свою очередь, демонстрируют высокую 
производительность при меньших вычислительных 
затратах. Таким образом, выбор модели зависит от 
доступных ресурсов и требований к точности.
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Таблица 1. Описательная статистика исходных данных
Table 1. Descriptive statistics of the original data

Газ

Статистики

Среднее, 
ppm

Стандартное 
отклонение, ppm

Минимум, 
ppm

Максимум, 
ppm

Медиана, 
ppm Мода, ppm

CH4 1,95 0,06 1,89 2,34 1,92 1,89

H2O 0,92 0,24 0,41 1,78 0,88 0,41

CO 0,09 0,02 0,07 0,29 0,09 0,07

CO2 393 2,95 382 407 393 382

Таблица 2. Оценка эффективности моделей
Table 2. Evaluation of the effectiveness of models

Газ Модель MAE RMSE NRMSE Коэффициент 
корреляции

CO2

MTGNN 0,033 0,048 0,111 0,994

LSTM 0,036 0,054 0,125 0,992

LSTNet 0,043 0,063 0,146 0,989

CH4

MTGNN 0,026 0,041 0,061 0,998

LSTM 0,048 0,072 0,106 0,995

LSTNet 0,045 0,070 0,104 0,996

CO

MTGNN 0,021 0,027 0,072 0,998

LSTM 0,038 0,057 0,153 0,990

LSTNet 0,044 0,063 0,170 0,986

H2O

MTGNN 0,030 0,047 0,089 0,997

LSTM 0,050 0,069 0,131 0,993

LSTNet 0,062 0,078 0,150 0,992

Модель MTGNN показала наивысшие показатели 
точности среди рассмотренных моделей благодаря 
способности выявлять структурные и временны́е за-
висимости между признаками. В частности:
•• локальные паттерны: подграфы (subgraph_size = 3) 
позволяют модели фиксировать локальные зако-
номерности во временны́х рядах, например кра-
ткосрочные колебания концентраций газа;

•• долгосрочные зависимости: параметры gcn_
depth = 3 и dilation_exponential = 2 расширяют ре-
цептивное поле по времени, что помогает учиты-
вать тенденции на более длинных интервалах;

•• обучаемая структура графа: build_adj = True и gcn_
true = True дают возможность адаптировать граф 
к данным и выявлять скрытые корреляции между 
четырьмя признаками.
Однако абсолютные различия в  метриках точно-

сти между MTGNN и  рекуррентными моделями не-

велики, что указывает на то, что для небольшого 
числа признаков (четырех) применение GNN может 
быть избыточным. Преимущества графовой модели 
становятся особенно заметны при большем числе уз-
лов или более сложной пространственно-временно́й 
структуре данных.

На рис.  2—5 показан прогноз временны́х ря-
дов с  использованием моделей LSTM, LSTNet 
и  MTGNN. Все модели продемонстрировали хоро-
шие результаты, успешно справившись с  задачей 
прогнозирования.

Все анализируемые подходы адекватно воспро-
изводили общую тенденцию в динамике временны́х 
рядов, однако графовая сеть точнее описывала на-
блюдаемые закономерности и  не нуждалась в  до-
полнительных линейных корректировках. Кроме того, 
рекуррентные модели хуже справлялись с резкими 
пиками и переходами в данных, что особенно замет-
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Предсказанные значения
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Время, ч

Время, ч Время, ч

Сравнение LSTNet с нормализованными
наблюдаемыми данными для СН4

Сравнение LSTM с нормализованными
наблюдаемыми данными для СН4

Сравнение MTGNN с нормализованными
наблюдаемыми данными для СН4

Сравнение MTGNN с нормализованными
наблюдаемыми данными для СО 

Сравнение LSTNet с нормализованными
наблюдаемыми данными для СО  

Сравнение LSTM с нормализованными
наблюдаемыми данными для СО

Рис. 2. Прогноз моделей для динамики CH4.  
Составлено авторами
Fig. 2. Model forecast for CH4 dynamics.  
Compiled by the authors

Рис. 3. Прогноз моделей для динамики CO.  
Составлено авторами
Fig. 3. Model forecast for CO dynamics.  
Compiled by the authors
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Предсказанные значения

Наблюдаемые значения
Предсказанные значения

 Сравнение LSTM с нормализованными 
наблюдаемыми данными для CO2

Сравнение MTGNN с нормализованными 
наблюдаемыми данными для CO2
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Сравнение LSTN с нормализованными
наблюдаемыми данными для Н20

Сравнение LSTNet с нормализованными
наблюдаемыми данными для Н20

Сравнение MTGNN с нормализованными
наблюдаемыми данными для Н20
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Рис. 4. Прогноз моделей для динамики CO2.  
Составлено авторами
Fig. 4. Model forecast for CO2 dynamics.  
Compiled by the authors

Рис. 5. Прогноз моделей для динамики H2O.  
Составлено авторами
Fig. 5. Model forecast for H2O dynamics.  
Compiled by the authors
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но при прогнозировании многомерных временны́х 
рядов (см. рис. 2—5).

Диаграмма Тейлора позволила оценить, насколь-
ко точно предложенные модели прогноза воспроиз-
водят каждый из четырех наблюдаемых временны́х 
рядов. Построенная диаграмма объединяет стан-
дартное отклонение, коэффициент корреляции 
и стандартное отклонение всех прогнозных моделей 
(рис. 6).

Общий анализ показывает, что модель MTGNN 
демонстрирует наилучшие результаты по всем пока-
зателям. Она стабильно обеспечивает наибольшую 
корреляцию с  эталонными данными, близкое стан-
дартное отклонение и  наименьшую RMS-ошибку. 
Особенно хорошо MTGNN справляется с  прогнози-
рованием CO2 и CH4, где ее точки находятся ближе 
всего к эталонным значениям на диаграмме. Также 
она уверенно лидирует при прогнозировании H2O 
и показывает умеренно хорошие результаты по CO, 
где в  целом качество предсказаний всех моделей 
ниже. Модель LSTM занимает промежуточную по-
зицию: она уступает MTGNN, но зачастую опережа-
ет LSTNet. LSTNet, в свою очередь, демонстрирует 
наихудшие результаты по всем четырем газам  — 
ее предсказания менее точны, корреляция ниже, 
а  RMS-ошибка выше. Таким образом, из всех про-
тестированных моделей MTGNN является наиболее 
точной и стабильной архитектурой для прогнозиро-

вания динамики концентраций газов за исследуе-
мый период.

Одним из ограничений подхода на основе MTGNN 
стало увеличение времени обучения и  количества 
параметров по сравнению с  рекуррентными ме-
тодами, что согласуется с  тем, что графовые сети 
обычно требуют большего объема вычислительных 
ресурсов. Предполагается, что эти ограничения мо-
гут быть ослаблены путем использования несколь-
ких техник оптимизации: подвыборки данных, мини-
батчинга, агрегации временны́х признаков, сжатия 
признаков, оптимизации архитектуры модели, дина-
мического распределения памяти, сжатия и кванто-
вания весов, методов кросс-валидации и регуляри-
зации. Например, агрегация временны́х признаков 
позволяет хранить усредненные или максимальные 
значения за фиксированные временны́е интервалы, 
а  мини-батчинг подразумевает обработку сегмен-
тов временно́го ряда небольшими порциями, что 
снижает нагрузку на память. Сжатие признаков 
(PCA и  прочие методы) уменьшает размерность, 
а оптимизация архитектуры, включая рекуррентные 
слои или дополнительные механизмы сжатия весов, 
помогает ускорить обучение и сократить количество 
используемых ресурсов.

В текущем исследовании для обработки 
временны́х рядов применялось «окно выборки», по-
зволяющее анализировать только недавние и теку-

Рис. 6. Диаграмма Тейлора, построенная по нормализованным данным. Составлено авторами
Fig. 6. Taylor diagram plotted from normalized data. Compiled by the authors
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щие значения, а  не весь ряд. Подвыборка данных 
также может повысить эффективность, так как сни-
жает частоту измерений, беря значения через регу-
лярные интервалы.

Заключение
В работе приведено сравнение графовых и рекур-

рентных методов для прогнозирования динамики 
временны́х рядов естественного происхождения на 
примере приземной концентрации четырех газов 
CO2, CH4, CO и H2O, измеренных на острове Белый за 
летние месяцы 2016—2017  гг. Рекуррентные ней-
ронные сети были представлены моделями LSTM 
и  LSTNet, графовый подход  — моделью MTGNN, 
на вход которой подавались данные в виде графов, 
полученные из исходных временны́х рядов. Срав-
нение моделей выявило преимущества и ограниче-
ния графовых методов по сравнению с  традицион-
ными архитектурами, что позволило более полно 
оценить их потенциал в  задачах прогнозирования 
временны́х рядов. Полученные результаты показы-
вают, что хотя рекуррентные модели конкуренто-
способны в задачах прогнозирования многомерных 
временны́х рядов, использование графовых нейрон-
ных сетей открывает более широкие перспективы 
при увеличении объемов данных и усложнении меж-
серийных связей. Несмотря на требования бо́льших 
вычислительных ресурсоа и времени обучения, гра-
мотно сконструированные GNN позволяют точнее 
улавливать структурные зависимости во временны́х 
рядах и  дают более стабильные прогнозы без до-
полнительной ручной постобработки.

Модели LSTM, LSTNet и MTGNN в данной работе 
ориентированы на краткосрочное прогнозирование 
концентраций газов (окна 48—96 отсчетов, что со-
ответствует нескольким суткам при почасовой дис-
кретизации). Причина в следующем:
•• Рекуррентные и  графовые модели хорошо улав-
ливают локальные и  среднесрочные зависи-
мости, но при экстраполяции на длительные
горизонты (месяцы-год) ошибки прогнозов на-
капливаются, что снижает точность. Для долго-
срочного прогноза потребуются либо модели,
специально обученные на многолетних данных,
либо гибридные подходы с сезонными и трендо-
выми компонентами.

•• Число входных признаков и  длина окна ограни-
чивают способность моделей захватывать долго-
срочные циклы и редкие события, которые прояв-
ляются на временны́х интервалах больше года.
В заключение необходимо отметить, что при со-

поставимой точности прогнозов архитектуры, ос-
нованные на графах, как показала модель MTGNN,
обладают более широким потенциалом при возрас-
тании объема и сложности данных благодаря уче-
ту структурных взаимосвязей между переменными.
Таким образом, графовые нейронные сети могут
оказаться более эффективными для решения слож-
ных задач прогнозирования динамики временны ́х

рядов, хотя это и сопряжено с бо ́льшими вычисли-
тельными затратами.
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Abstract
In recent years, the application of machine learning technologies has become increasingly relevant for moni-
toring greenhouse gas emissions in the Arctic, where intense permafrost degradation and increasing methane 
emissions into the atmosphere are observed. In the study, we have developed and compared recurrent and graph 
neural network-based models to predict the dynamics of concentrations of major greenhouse gases in the sur-
face air on Bely Island, the Yamalo-Nenets Autonomous Area, Russia. The original dataset consisted of surface 
concentration measurements of four gases for the summer months of 2016—2017: carbon dioxide (CO2), meth-
ane (CH4), carbon monoxide (CO), and water vapor (H2O). For graph forecasting, we used the Multivariate Time 
Series Graph Neural Network (MTGNN) model; for recurrent forecasting, we used the Long Short-Term Memory 
(LSTM) and Long Short-Term Memory Network (LSTNet) models. The forecast accuracy of the models was 
assessed using the following metrics: mean absolute error (MAE), root mean square error (RMSE), normalized 
root mean square error (NRMSE), and correlation coefficient (Corr). In general, the MTGNN model demonstrated 
lower error values compared to recurrent models (LSTM, LSTNet). Compared to LSTM and LSTNet, MTGNN had 
25—55% lower errors. The more accurate graph model required significantly more time to train and had a sig-
nificantly larger number of parameters for optimization.
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